h1_key

當(dāng)前位置:首頁(yè) >新聞資訊 > 技術(shù)文章>亞德諾>∑-Δ型ADC構(gòu)建低功耗精密信號(hào)鏈應(yīng)用時(shí)序因素有哪些?
∑-Δ型ADC構(gòu)建低功耗精密信號(hào)鏈應(yīng)用時(shí)序因素有哪些?
2022-11-29 1019次

  "時(shí)間尤其重要"——這個(gè)古老的慣用語(yǔ)言可以應(yīng)用于任何領(lǐng)域,但當(dāng)它應(yīng)用于現(xiàn)實(shí)世界信號(hào)的取樣時(shí),它是我們工程學(xué)科的支柱。當(dāng)我們?cè)噲D降低功耗,實(shí)現(xiàn)時(shí)序目標(biāo)并滿足性能要求時(shí),我們必須考慮測(cè)量信號(hào)鏈選擇哪一個(gè)ADC架構(gòu)類型:∑-Δ或者一次接近寄存器(SAR)。一旦選擇了特定的架構(gòu),系統(tǒng)設(shè)計(jì)師就可以建立所需的電路,以獲得必要的系統(tǒng)性能。此時(shí),設(shè)計(jì)師應(yīng)考慮其低功耗精密信號(hào)鏈中最重要的時(shí)序因素。



  圖1. 信號(hào)鏈時(shí)序考量


  需要高速度:低功耗信號(hào)鏈選擇SAR型還是∑-Δ型?

  我們將重點(diǎn)關(guān)注測(cè)量帶寬低于10 kHz的精密低功耗測(cè)量和信號(hào)(例如溫度、壓力和流量),不過(guò)本文涉及的很多主題也可應(yīng)用于帶寬更寬的測(cè)量系統(tǒng)。

  過(guò)去,當(dāng)探索低功耗系統(tǒng)時(shí),設(shè)計(jì)人員會(huì)選擇∑-Δ ADC來(lái)實(shí)現(xiàn)對(duì)緩慢移動(dòng)信號(hào)的較高精度測(cè)量。SAR被認(rèn)為更適用于需要轉(zhuǎn)換較多通道的高速測(cè)量,但新型SAR(如 AD4630-24 )正在進(jìn)入傳統(tǒng)上使用∑-Δ ADC的高精度領(lǐng)域,因此以上說(shuō)法并不是硬性規(guī)定。關(guān)于ADC架構(gòu)的實(shí)際例子,我們來(lái)看兩款低功耗產(chǎn)品并考慮與ADC信號(hào)鏈架構(gòu)相關(guān)的時(shí)序:AD4130-8 ∑-Δ ADC和 AD4696 SAR ADC,如表1所示。


  表1. 超低功耗ADC






  采樣頻率抑或輸出數(shù)據(jù)速率?

  SAR轉(zhuǎn)換器對(duì)輸入進(jìn)行采樣,在已知時(shí)間點(diǎn)捕獲信號(hào)電平。初始采樣(和保持)階段之后是轉(zhuǎn)換階段。獲取結(jié)果所需的時(shí)間很大程度上取決于采樣頻率。

  ∑-Δ轉(zhuǎn)換器以調(diào)制器頻率進(jìn)行采樣。調(diào)制器會(huì)過(guò)采樣,采樣速率遠(yuǎn)高于輸入信號(hào)的奈奎斯特頻率。額外的頻率跨度使得噪聲可以被轉(zhuǎn)移到更高頻率。然后,ADC對(duì)調(diào)制器輸出使用一種稱為"抽取"的處理,通過(guò)降低采樣速率來(lái)?yè)Q取更高的精度。它是通過(guò)數(shù)字低通濾波器完成的,相當(dāng)于時(shí)域中的平均操作。

  不同技術(shù)獲取轉(zhuǎn)換結(jié)果的方式有所不同,SAR產(chǎn)品文檔使用的概念是采樣頻率(fSAMPLE),而∑-Δ產(chǎn)品的數(shù)據(jù)手冊(cè)使用輸出數(shù)據(jù)速率(ODR)。當(dāng)相對(duì)于時(shí)間詳細(xì)討論這些架構(gòu)時(shí),我們會(huì)引導(dǎo)讀者區(qū)分二者。




圖2. SAR (?SAMPLE)與∑-Δ (ODR)的比較


  對(duì)于在多個(gè)通道上執(zhí)行一次轉(zhuǎn)換的多路復(fù)用ADC,在所有通道上執(zhí)行轉(zhuǎn)換所需的時(shí)間(包括建立時(shí)間等)稱為吞吐速率。

  信號(hào)鏈的第一個(gè)時(shí)序考慮因素是偏置/激勵(lì)傳感器和信號(hào)鏈上電所需的時(shí)間。電壓和電流源需要開(kāi)啟,傳感器需要偏置,啟動(dòng)時(shí)間規(guī)格需要考慮。例如,對(duì)于基準(zhǔn)電壓引腳上的特定負(fù)載電容,AD4130-8片內(nèi)基準(zhǔn)電壓源的開(kāi)啟建立時(shí)間為280 μs。片內(nèi)偏置電壓(可用于激勵(lì)傳感器)具有每nF 3.7 μs的啟動(dòng)時(shí)間,但這取決于連接到模擬輸入引腳的電容量。

  在研究了信號(hào)鏈中的上電時(shí)間之后,我們需要了解與ADC架構(gòu)相關(guān)的時(shí)序考量。我們首先將重點(diǎn)介紹超低功耗應(yīng)用中以∑-Δ ADC為核心的測(cè)量信號(hào)鏈,以及與此類ADC相關(guān)的重要時(shí)序考慮因素。SAR和∑-Δ信號(hào)鏈在影響時(shí)序的方面有一些重疊,例如運(yùn)用技術(shù)以使微控制器交互時(shí)間最小化,從而實(shí)現(xiàn)系統(tǒng)級(jí)功耗改進(jìn)。

  使用∑-Δ ADC時(shí)的信號(hào)鏈時(shí)序考量

  如果選擇的ADC是∑-Δ型而非SAR型,則需要考慮一組特定的時(shí)序因素。查看信號(hào)鏈時(shí),需要探索的主要方面是模擬前端時(shí)序、ADC時(shí)序和數(shù)字接口時(shí)序,如圖1所示。


  模擬前端時(shí)序考量

  我們將分別探討這三個(gè)模塊,從模擬前端(AFE)開(kāi)始。AFE可能因設(shè)計(jì)類型而異,但有一些共同方面適用于大多數(shù)電路。




  圖3. AFE ∑-Δ時(shí)序考量


  AD4130-8是 精密低功耗 信號(hào)鏈產(chǎn)品組的一部分,經(jīng)過(guò)專門設(shè)計(jì),具有豐富的特性組合,可在降低功耗的同時(shí)實(shí)現(xiàn)高性能。其中一些特性包括片上FIFO、智能通道時(shí)序控制器和占空比控制。

  AD4130-8是ADI公司的超低功耗∑-Δ ADC??紤]其片內(nèi)包含許多關(guān)鍵信號(hào)鏈構(gòu)建模塊,例如片內(nèi)基準(zhǔn)電壓源、可編程增益放大器(PGA)、多路復(fù)用器、傳感器激勵(lì)電流或傳感器偏置電壓等,超低電流令人印象深刻。

  此器件的AFE包括一個(gè)片內(nèi)PGA,其使模擬輸入電流最小化,從而無(wú)需外部放大器來(lái)驅(qū)動(dòng)輸入。過(guò)采樣之后的數(shù)字濾波器確保帶寬主要由數(shù)字濾波器控制。AD4130-8提供多個(gè)片內(nèi)sinc3和sinc4濾波器,另外還有用于抑制50 Hz和60 Hz噪聲的濾波器。sinc3和sinc4數(shù)字濾波器需要外部抗混疊濾波器作為補(bǔ)充。該抗混疊濾波器的作用是限制輸入信號(hào)的帶寬量。這是為了確保噪聲(例如變化率為調(diào)制器頻率fMOD的噪聲)不會(huì)混疊到通帶和轉(zhuǎn)換結(jié)果中。



圖4. AD4130 ∑-Δ簡(jiǎn)化系統(tǒng)模塊


 
圖5. 外部和內(nèi)部組合濾波的仿真

  抗混疊濾波器

  可以使用更高階的抗混疊濾波器,但通常使用一階、單極點(diǎn)、低通濾波器來(lái)滿足要求。濾波器基于對(duì)目標(biāo)信號(hào)的采樣進(jìn)行設(shè)計(jì),式1決定濾波器的3 dB帶寬:







  選擇電容值和電阻值時(shí),較高電阻值更可取,但可能會(huì)增加噪聲,而較低電容值存在一個(gè)限值,達(dá)到該限值之后,引腳電容與外部電容之比就變成相關(guān)因素。

  根據(jù)此電容上可以看到的最大電壓階躍確定電路充電所需的時(shí)間非常重要。



圖6. 一階低通抗混疊濾波器


  電容上的電壓將隨時(shí)間變化,變化率為







  VC = 某個(gè)時(shí)間點(diǎn)電容兩端的電壓,t = 時(shí)間






  圖7. 響應(yīng)1 V滿量程階躍變化的一階低通濾波器建立時(shí)間


  上電時(shí),階躍大小VS可能等于ADC的整個(gè)輸入電壓范圍(±VREF/增益)。

  圖7顯示,經(jīng)過(guò)4個(gè)時(shí)間常數(shù)(S。所需的時(shí)間常數(shù)數(shù)目可通過(guò)計(jì)算階躍大小VS之比的自然對(duì)數(shù)來(lái)獲得。






  NT為需要等待的時(shí)間常數(shù)數(shù)目,在此時(shí)間內(nèi)輸入建立至ADC輸入電壓范圍的1 LSB的一半(VHALF_LSB)以內(nèi)。上式中的VHALF_LSB可以根據(jù)需要的電壓精度代入適當(dāng)?shù)臄?shù)值。如果系統(tǒng)設(shè)計(jì)人員希望分辨率在半個(gè)LSB內(nèi),則對(duì)于具有N位分辨率且內(nèi)部PGA增益為1的雙極性輸入ADC,這將是:






  得到實(shí)際輸入電壓所需的時(shí)間tACQ等于時(shí)間常數(shù)數(shù)目乘以







  傳統(tǒng)上,當(dāng)在多路復(fù)用ADC的通道之間切換時(shí),通道之間的大電壓擺幅(一個(gè)通道處于負(fù)滿量程,下一個(gè)通道處于正滿量程)將需要類似的計(jì)算。AD4130-8解決此問(wèn)題的辦法是實(shí)現(xiàn)一個(gè)低功耗片內(nèi)預(yù)充電緩沖器,該緩沖器在切換通道時(shí)開(kāi)啟。這就確保了在最快數(shù)據(jù)速率時(shí),切換通道后的第一次轉(zhuǎn)換將能正確進(jìn)行。該器件還有一個(gè)片內(nèi)PGA,其目的是實(shí)現(xiàn)完整的共模輸入范圍,這就為系統(tǒng)設(shè)計(jì)人員提供了更大的裕量,以應(yīng)對(duì)變化范圍更寬的共模電壓。這對(duì)于測(cè)量信號(hào)很有用,但在最壞情況下,一個(gè)通道可能處于負(fù)滿量程,而下一個(gè)通道可能處于正滿量程。



圖8. 帶低通濾波器的隔離式AD4130-8電路

  示例:模擬前端低通濾波器

  圖8中的示例顯示了一個(gè)惠斯通電橋傳感器,其–3 dB濾波適用于16 kHz以下的24位ADC。R = 1 kΩ,C = 0.01 μF,VREF = 2.5 V,PGA增益設(shè)置為1:

  圖8中的單端濾波器顯示主傳感器R = 1 kΩ且C = 0.01 μF:







  圖8中的差分信號(hào)濾波器顯示主傳感器R = 1 kΩ且C = 0.1 μF。有關(guān)公式的更多信息,請(qǐng)參閱 MT-070:







  差分傳感器時(shí)間常數(shù)在單端值中占主導(dǎo)地位,因此它將決定整個(gè)系統(tǒng)的計(jì)算:







  這是上電時(shí)系統(tǒng)設(shè)計(jì)人員需要為濾波器留出的時(shí)間,以便其先在外部建立,再收集樣本。這可以在數(shù)字域中通過(guò)丟棄樣本來(lái)完成,或者可以延遲采樣時(shí)刻以顧及充電。

  設(shè)計(jì)濾波器時(shí),電阻和電容值可能與前面顯示的不同。系統(tǒng)設(shè)計(jì)人員可以使用LTspice®將濾波器與AD4130-8一起建模。LTspice還可用于對(duì)系統(tǒng)或信號(hào)鏈進(jìn)行建模,如圖9所示:通過(guò)改變R2來(lái)模擬RTD行為。



  圖9. LTspice中的RTD (R2)電路仿真


  ADC時(shí)序考慮因素

  回想一下輸出數(shù)據(jù)速率與∑-Δ ADC時(shí)序的關(guān)系,現(xiàn)在我們來(lái)探討與此類ADC相關(guān)的內(nèi)部時(shí)序。




圖10. ∑-Δ ADC時(shí)序考慮因素


  此類轉(zhuǎn)換器使用低分辨率(1位)ADC以高采樣速率將模擬信號(hào)數(shù)字化。將過(guò)采樣技術(shù)與噪聲整形和數(shù)字濾波結(jié)合使用,可以提高有效分辨率。

  通過(guò)SPI接口寫入數(shù)字寄存器,用戶可以控制AD4130-8的過(guò)采樣和抽取率。調(diào)制器采樣速率(fMOD)是固定的。FS值實(shí)質(zhì)上改變了數(shù)字濾波器得出結(jié)果所使用的樣本數(shù)(對(duì)于AD4130-8,增量為16)。改變FS字會(huì)改變每個(gè)ADC結(jié)果的過(guò)采樣調(diào)制時(shí)鐘周期數(shù)。



  圖11. 抽取


  抽取會(huì)降低ADC輸出的有效采樣速率,從而實(shí)現(xiàn)更高的精度。抽取可以被視為一種去除過(guò)采樣過(guò)程引入的冗余信號(hào)信息的方法。使用的抽取越多(數(shù)字濾波器計(jì)算中包含的樣本越多),所述數(shù)字濾波器實(shí)現(xiàn)的精度越高,但輸出數(shù)據(jù)速率會(huì)越慢。







  其中:fADC 為輸出數(shù)據(jù)速率,fMOD 為主時(shí)鐘頻率,F(xiàn)S為用于控制抽取率的乘數(shù)


  濾波器延遲

  當(dāng)使能多個(gè)通道時(shí),數(shù)據(jù)手冊(cè)中的輸出數(shù)據(jù)速率或ODR (fADC)與數(shù)據(jù)吞吐速率之間的聯(lián)系更加復(fù)雜。這是因?yàn)榍袚Q通道時(shí)數(shù)字濾波器存在延遲。數(shù)字濾波器建立所需的時(shí)間取決于sinc濾波器類型。圖12顯示,sinc3濾波器的第一次轉(zhuǎn)換需要三個(gè)轉(zhuǎn)換周期,直至達(dá)到模擬輸入的數(shù)字等效值。sinc4濾波器的第一次轉(zhuǎn)換需要四個(gè)轉(zhuǎn)換周期。tSETTLE是考慮多路復(fù)用器切換的用戶可編程建立時(shí)間。濾波器階數(shù)越高,噪聲越低,但缺點(diǎn)是濾波器建立所需的轉(zhuǎn)換周期數(shù)會(huì)越多。



圖12. 濾波器延遲


  數(shù)字接口時(shí)序考量

  為了幫助理解AD4130等∑-Δ ADC的數(shù)字接口時(shí)序,ADI軟件工具ACE提供了一個(gè)模型。時(shí)序工具是 ACE軟件中集成的多個(gè)軟件工具的一部分。我們可以通過(guò)時(shí)序控制器時(shí)序圖和FIFO時(shí)序圖來(lái)幫助理解這些配置。



圖13. AFE ∑-Δ數(shù)字接口時(shí)序考慮因素


  AD4130-8時(shí)序控制器允許不同的輸入通道具有不同的數(shù)字濾波器和建立配置以及時(shí)序。時(shí)序工具簡(jiǎn)化了數(shù)據(jù)何時(shí)可以讀取的計(jì)算過(guò)程。

  當(dāng)使能多個(gè)通道時(shí),用戶不應(yīng)錯(cuò)誤地讀取已建立的通道ODR并除以使能的通道數(shù)來(lái)計(jì)算吞吐速率,因?yàn)檫@沒(méi)有考慮數(shù)字濾波器延遲。計(jì)算吞吐速率(有效ODR與數(shù)據(jù)手冊(cè)O(shè)DR)時(shí),應(yīng)考慮濾波器延遲。當(dāng)使能多個(gè)通道時(shí),需要計(jì)算初始建立時(shí)間(tSETTLE)以及內(nèi)部轉(zhuǎn)換周期數(shù)(t1st_CONV_IDEAL),如圖14所示。



圖14. 包括濾波器延遲的第一次轉(zhuǎn)換的輸出數(shù)據(jù)速率


  如果所有通道都具有相同的濾波器和建立配置,并且任何通道上都沒(méi)有重復(fù)轉(zhuǎn)換,則系統(tǒng)的吞吐速率為:







  其中CHs = 使能的通道數(shù)t1ST_CNV_IDEAL = 包括濾波器延遲的轉(zhuǎn)換時(shí)間tSETTLE = 數(shù)字控制的時(shí)序參數(shù),可以延長(zhǎng),但有一個(gè)最小可編程時(shí)間以顧及多路復(fù)用器的建立

  吞吐速率可以通過(guò)1CNV_ODR時(shí)間的總和來(lái)計(jì)算,該時(shí)間總和就是圖14中綠色方塊之間的時(shí)間。







  示例:壓力傳感器信號(hào)鏈時(shí)序




圖15. 簡(jiǎn)化的壓力傳感器系統(tǒng)框圖


  假設(shè)要設(shè)計(jì)一個(gè)系統(tǒng),它有多個(gè)壓力傳感器(以圖15中的壓力傳感器為代表),并伴有一個(gè)溫度傳感器:?jiǎn)栴} A:系統(tǒng)中相對(duì)于每個(gè)AD4130-8可以部署多少個(gè)壓力傳感器?問(wèn)題 B:如果壓力傳感器的電壓輸出范圍為3 mV/V,那么預(yù)期分辨率是多少?問(wèn)題 C:如果工廠中的一條生產(chǎn)線需要至少14位的有效分辨率來(lái)滿足系統(tǒng)的動(dòng)態(tài)范圍需求,那么該系統(tǒng)由多少個(gè)稱重傳感器構(gòu)成?

  A部分

  第1步:選擇增益

  AVDD = 1.8 V。REFIN+至 REFIN– = 1.8 V3 mV/V稱重傳感器的1.8 V激勵(lì)將導(dǎo)致每個(gè)稱重傳感器的最大輸出為5.4 mV。PGA的最大增益 = 128。ADC輸入端的電壓為5.4 mV × 128 = 0.7 V,完全在1.8 V范圍內(nèi)。128倍的PGA增益是要使用的正確增益。


  第2步:選擇FS值

  我們希望選擇sinc3濾波器和FS = 1支持的最快設(shè)置。



圖16. 使用時(shí)序工具計(jì)算t1CNV_ODR的總和

  第3步:使用一個(gè)通道的吞吐速率來(lái)計(jì)算系統(tǒng)中的通道數(shù)

  1CNV_ODR = (1/1.667 ms) 600 SPS.吞吐速率 = 600 SPS/Nch。1CNV_ODR = 具有相同配置且無(wú)重復(fù)轉(zhuǎn)換的多通道系統(tǒng)中單個(gè)通道的吞吐速率。可用60 SPS的采樣速率對(duì)10個(gè)通道進(jìn)行采樣。答案A:每個(gè)系統(tǒng)有九個(gè)稱重傳感器。

  第4步:使用數(shù)據(jù)手冊(cè)的有效分辨率表格

  還要注意一點(diǎn),當(dāng)查看噪聲和有效分辨率表格時(shí),計(jì)算須基于FS濾波器值,而不是吞吐速率。此處列出的ODR是單個(gè)已建立通道的ODR。


  圖17. FS字與增益的關(guān)系


  解讀數(shù)據(jù)手冊(cè)時(shí),系統(tǒng)設(shè)計(jì)人員需要小心。當(dāng)使能多個(gè)通道時(shí),吞吐速率(單位為SPS)會(huì)降低。需要注意的是,讀者可能會(huì)錯(cuò)誤地解讀數(shù)據(jù)手冊(cè)中的分辨率表格,認(rèn)為可以實(shí)現(xiàn)更高的分辨率。對(duì)于已建立通道的ODR,為了實(shí)現(xiàn)更高的精度,F(xiàn)S的變化會(huì)導(dǎo)致過(guò)采樣和抽取增加,從而減慢系統(tǒng)速度。在使能多個(gè)通道的情況下,讀取每個(gè)ADC通道的速度(SPS,即吞吐速率)下降是由于對(duì)多個(gè)通道進(jìn)行采樣所致,而不是過(guò)采樣增加所致。因此,分辨率不會(huì)增加。



  圖18. 分辨率與增益關(guān)系的數(shù)據(jù)手冊(cè)表格



  B部分

  如果查看數(shù)據(jù)手冊(cè)中的表格,我們會(huì)看到,對(duì)于FS = 1且增益 = 128,有效分辨率為11.7位。答案B:11.7位。


  C部分

  為了求解C,我們需要回退到A部分中的幾個(gè)步驟:

  第2步:選擇FS值

  這一次,我們根據(jù)分辨率要求選擇FS值。為了實(shí)現(xiàn)14位的有效分辨率,應(yīng)選擇FS = 3。

  第3步:使用一個(gè)通道的吞吐速率來(lái)計(jì)算系統(tǒng)中的通道數(shù)


  圖19. 使用時(shí)序工具更改濾波器類型和FS值,并讀取包括濾波器延遲的第一次轉(zhuǎn)換的輸出數(shù)據(jù)速率。

  我們可以使用時(shí)序AFM來(lái)實(shí)現(xiàn)所需的分辨率(1/4.167 μs)。240 SPS/Nch = 吞吐速率。在該數(shù)據(jù)速率下,我們可以使用四個(gè)通道。答案C:三個(gè)通道。


  占空比控制

  有些系統(tǒng)的吞吐速率較低而輸出數(shù)據(jù)速率較高,例如健康監(jiān)護(hù)設(shè)備,主機(jī)控制器在大部分時(shí)間將系統(tǒng)置于待機(jī)模式,僅定期轉(zhuǎn)換。AD4130-8提供占空比控制,用戶可以連續(xù)轉(zhuǎn)換,器件以3/4或15/16的占空比進(jìn)入待機(jī)模式,以1/4或1/16的占空比進(jìn)行轉(zhuǎn)換。活動(dòng)時(shí)間和待機(jī)時(shí)間與用戶選擇的設(shè)置有關(guān)。


  圖20. 占空比控制


  AD4130-8還有一個(gè)SYNC引腳,它允許用戶確定性地控制預(yù)選數(shù)量的通道上何時(shí)發(fā)生轉(zhuǎn)換。該器件還可以配置為在低電流待機(jī)模式下工作,啟動(dòng)轉(zhuǎn)換序列,離開(kāi)低電流狀態(tài),在多個(gè)通道上進(jìn)行轉(zhuǎn)換,當(dāng)轉(zhuǎn)換完成時(shí)返回待機(jī)模式。


  示例:使能占空比控制

  采用與之前的壓力傳感器信號(hào)鏈?zhǔn)纠嗤脑O(shè)置,吞吐速率 = 600 SPS/Nch,使能兩個(gè)通道,ODR變?yōu)?00 SPS,而在3 V電源下,平均電流將為28.7 μA(見(jiàn)圖21 )。


圖21. 使能占空比控制之前的吞吐時(shí)間和電流


  使能1/16的占空比后,吞吐速率變?yōu)?4.489 SPS,而該期間的平均電流變?yōu)?.088 μA(40.834 ms;見(jiàn)圖22)。


圖22. 使能占空比控制之后的吞吐時(shí)間和電流


  FIFO

  AD4130-8包括一個(gè)片上FIFO。FIFO可以緩沖轉(zhuǎn)換結(jié)果,讓微控制器或主機(jī)控制器有機(jī)會(huì)在等待轉(zhuǎn)換時(shí)進(jìn)入低功耗狀態(tài),從而降低系統(tǒng)功耗。這里的最大時(shí)序考量是確保主機(jī)在連續(xù)轉(zhuǎn)換的同時(shí)以足夠快的速度回讀FIFO,以避免錯(cuò)過(guò)轉(zhuǎn)換。

  當(dāng)收集到指定數(shù)量的樣本(也稱為水印)時(shí),用戶可以定期讀取FIFO。當(dāng)達(dá)到所需的樣本數(shù)量時(shí),中斷可用,主機(jī)回讀FIFO。需要清空FIFO才能清除中斷。用戶有一個(gè)預(yù)定義的時(shí)間段來(lái)從FIFO中回讀數(shù)據(jù)。使用的SCLK頻率將決定用戶可以讀取多少數(shù)據(jù)而不會(huì)錯(cuò)過(guò)轉(zhuǎn)換。

  通過(guò)ACE軟件時(shí)序工具,用戶可以在設(shè)計(jì)系統(tǒng)時(shí)改變SCLK頻率,或使用門控時(shí)鐘來(lái)通知用戶何時(shí)需要降低水印級(jí)別。例如,F(xiàn)IFO回讀。

  以最大ODR為2400 kSPS的連續(xù)單通道測(cè)量為例,如果水印級(jí)別設(shè)置為256,并且我們嘗試回讀,那么我們有729.2 μs的時(shí)間來(lái)回讀FIFO而不會(huì)錯(cuò)過(guò)任何轉(zhuǎn)換。用戶需要回讀4112位。該工具通知用戶,為了回讀FIFO并且不錯(cuò)過(guò)轉(zhuǎn)換,主機(jī)SPI時(shí)鐘頻率須為5.64 MHz。這超出了器件的最大規(guī)格5 MHz,會(huì)出現(xiàn)錯(cuò)誤,用戶可以修改水印以避免背離規(guī)格。



圖23. AD4130-8 ACE軟件FIFO回讀窗口和警報(bào)表3. ∑-Δ小結(jié)



  • MICROCHIP(微芯) PIC18F26K22-I/SS 產(chǎn)品參數(shù)介紹
  • MICROCHIP(微芯)的 PIC18F26K22-I/SS 是一款極具特色和優(yōu)勢(shì)的微控制器,在眾多應(yīng)用中展現(xiàn)出卓越的性能和功能。PIC18F26K22-I/SS 采用了高性能的 18 位 CPU 內(nèi)核,運(yùn)行速度高達(dá) 64 MHz,具備強(qiáng)大的數(shù)據(jù)處理能力,能夠高效地執(zhí)行復(fù)雜的指令和算法。其工作電壓范圍在 2.3V 至 5.5V 之間,為不同電源環(huán)境下的應(yīng)用提供了良好的適應(yīng)性。
    2024-07-31 207次
  • ADI(亞德諾)ADAU1701JSTZ音頻處理器技術(shù)解析
  • 在音頻處理領(lǐng)域,ADI(亞德諾)的 ADAU1701JSTZ 是一款性能出色的音頻處理器,為高質(zhì)量音頻應(yīng)用提供了強(qiáng)大的支持。ADAU1701JSTZ 采用先進(jìn)的SigmaDSP?內(nèi)核,其工作頻率可達(dá)50 MHz,能夠快速且高效地處理音頻數(shù)據(jù),確保實(shí)時(shí)性和精確性。
    2024-07-15 225次
  • 了解ADSP-21489BSWZ-4B數(shù)字信號(hào)處理器
  • 在數(shù)字信號(hào)處理的舞臺(tái)上,ADI(亞德諾)的 ADSP-21489BSWZ-4B 以其卓越的性能和先進(jìn)的特性脫穎而出,成為眾多應(yīng)用的核心驅(qū)動(dòng)力。ADSP-21489BSWZ-4B 基于SHARC?架構(gòu),工作頻率高達(dá) 400 MHz。這種高頻率賦予了它強(qiáng)大的數(shù)據(jù)處理能力,能夠迅速執(zhí)行復(fù)雜的數(shù)字信號(hào)處理算法和指令,確保在實(shí)時(shí)性要求嚴(yán)苛的應(yīng)用中也能迅速響應(yīng)。
    2024-07-15 224次
  • ADI(亞德諾)ADSP-21489KSWZ-5B技術(shù)詳解
  • ADI(亞德諾)的 ADSP-21489KSWZ-5B 是一款性能卓越、功能強(qiáng)大的處理器,為各種復(fù)雜的信號(hào)處理任務(wù)提供了高效可靠的解決方案。ADSP-21489KSWZ-5B 基于先進(jìn)的SHARC?架構(gòu),工作頻率高達(dá) 500 MHz。這種高頻率使得它能夠以極快的速度處理數(shù)據(jù)和執(zhí)行指令,具備強(qiáng)大的運(yùn)算能力和數(shù)據(jù)處理能力,能夠在短時(shí)間內(nèi)完成大量復(fù)雜的數(shù)字信號(hào)處理任務(wù),滿足對(duì)實(shí)時(shí)性和處理速度要求極高的應(yīng)用場(chǎng)景。
    2024-07-15 191次
  • ADAU1401AWBSTZ-RL音頻處理器技術(shù)解析
  • 在音頻處理領(lǐng)域,ADI(亞德諾)的 ADAU1401AWBSTZ-RL 是一款性能卓越、功能豐富的音頻處理器,為各種音頻應(yīng)用提供了強(qiáng)大的支持。ADAU1401AWBSTZ-RL 基于 SigmaDSP? 內(nèi)核架構(gòu),具有強(qiáng)大的數(shù)字信號(hào)處理能力。其工作頻率高達(dá) 294.912 MHz,使得它能夠快速而高效地處理音頻數(shù)據(jù),輕松應(yīng)對(duì)復(fù)雜的音頻算法和處理任務(wù)。
    2024-07-15 157次

    萬(wàn)聯(lián)芯微信公眾號(hào)

    元器件現(xiàn)貨+BOM配單+PCBA制造平臺(tái)
    關(guān)注公眾號(hào),優(yōu)惠活動(dòng)早知道!
    10s
    溫馨提示:
    訂單商品問(wèn)題請(qǐng)移至我的售后服務(wù)提交售后申請(qǐng),其他需投訴問(wèn)題可移至我的投訴提交,我們將在第一時(shí)間給您答復(fù)
    返回頂部