h1_key

當(dāng)前位置:首頁(yè) >新聞資訊 > 技術(shù)文章>英飛凌>通過(guò)優(yōu)化模塊布局解決芯片縮小的電氣性能
通過(guò)優(yōu)化模塊布局解決芯片縮小的電氣性能
2023-03-14 493次

  如何能夠改善電氣性能。同樣,我們將以采用TRENCHSTOP? IGBT 7技術(shù)的新型1200V、600A EconoDUAL? 3模塊為例,該模塊針對(duì)通用驅(qū)動(dòng)(GPD)、商業(yè)、建筑和農(nóng)業(yè)車(chē)輛(CAV)、不間斷電源(UPS)和太陽(yáng)能等應(yīng)用進(jìn)行了優(yōu)化。

  1200V TRENCHSTOP? IGBT 7中功率技術(shù)與以前的IGBT 4技術(shù)相比,芯片縮小了約30%。芯片放置和模塊布局可以對(duì)較小的芯片的熱性能產(chǎn)生積極的影響,但它們也會(huì)影響開(kāi)關(guān)損耗。

  小芯片的電氣挑戰(zhàn)

  在EconoDUAL? 3這樣的中等功率模塊中,需要并聯(lián)多個(gè)芯片以實(shí)現(xiàn)高模塊電流。為了充分利用芯片技術(shù)的開(kāi)關(guān)性能,一個(gè)適當(dāng)?shù)哪K設(shè)計(jì)是關(guān)鍵,這意味著并聯(lián)芯片的對(duì)稱(chēng)性非常重要。

  開(kāi)關(guān)速度和損耗的一個(gè)限制因素是在IGBT開(kāi)啟期間從二極管到IGBT之間的換流。圖1說(shuō)明了在相同的di/dt,和相同的IGBT和二極管技術(shù)和尺寸下,兩種不同模塊布局的IGBT開(kāi)啟過(guò)程。

通過(guò)優(yōu)化模塊布局解決芯片縮小的電氣性能

  圖1:模塊布局V1和V2的IGBT 7開(kāi)啟過(guò)程,開(kāi)關(guān)速度相同

  當(dāng)電流開(kāi)始上升時(shí),CE電壓下降。兩種不同布局之間的一個(gè)明顯區(qū)別是,電壓(Vce)在V1中顯示出一個(gè)駝峰曲線,這是由二極管的恢復(fù)過(guò)程造成的。二極管的電流需要過(guò)零,以便能夠承擔(dān)電壓。從這點(diǎn)開(kāi)始,IGBT可以將電壓轉(zhuǎn)移到二極管上,讓自己的電壓下降,直到達(dá)到飽和狀態(tài)(Vcesat)。

  由于芯片并聯(lián),最慢的二極管決定了整體開(kāi)關(guān)速度。盡管兩種布局在第一階段顯示了相等的di/dt,但V2有一個(gè)較高的反向恢復(fù)電流峰值,而V1在最后階段顯示了一個(gè)較高的反向恢復(fù)拖尾電流。這表明兩種布局的二極管恢復(fù)過(guò)程是不同的,而且它直接影響到IGBT的開(kāi)通損耗和二極管的關(guān)斷損耗。為了更清楚地看到這一點(diǎn),你可以比較V1和V2的模塊布局的簡(jiǎn)化原理圖(圖2)。

  比較模塊布局原理圖以改善換流能力



  模塊布局V1的簡(jiǎn)化示意圖;

  LD3;

  LT3;LLS>LHS>>LT12=LD12



 模塊布局V2的簡(jiǎn)化示意圖;LLS=LHS=LAC>>LT=LD

  圖2:模塊布局V1和V2的簡(jiǎn)化示意圖。低邊IGBT的開(kāi)啟過(guò)程和反向恢復(fù)電流的電流路徑用紅色標(biāo)出。

  在V1中,高邊(HS)和低邊(LS)的所有IGBT和FWD被分別并聯(lián),然后通過(guò)一個(gè)公共電感(LHS)連接。在LS IGBT的開(kāi)啟過(guò)程中,所有的高邊二極管與低邊IGBT通過(guò)這個(gè)單一的公共電感進(jìn)行換向,這降低了反向恢復(fù)電流上升階段的di/dt,從而導(dǎo)致載流子的提取速度變慢。

  在V2中,使用了不同的物理布局。在這里,每個(gè)高邊二極管可以在它自己的電流路徑上與相應(yīng)的低邊IGBT直接換向。這導(dǎo)致了在二極管電流的過(guò)零點(diǎn)到反向恢復(fù)電流峰值之間的階段有一個(gè)更陡峭的di/dt。更多的電荷載流子在第一階段被提取,而二極管可以更快地建立電壓(圖3)。


通過(guò)優(yōu)化模塊布局解決芯片縮小的電氣性能

  圖3:在相同的di/dt開(kāi)關(guān)速度下,模塊布局V1和V2的二極管關(guān)斷

  當(dāng)從所有二極管中提取載流子的過(guò)程是同步的,IGBT電壓可以更快地下降,降低IGBT開(kāi)啟的開(kāi)關(guān)損耗。最好的情況是當(dāng)并聯(lián)的IGBT可以直接與對(duì)面的各自的續(xù)流二極管(FWD)換向,所有的路徑都有理想的相同電感。盡管V2中低邊和高邊的不對(duì)稱(chēng)性增加了,但可以實(shí)現(xiàn)整體開(kāi)關(guān)損耗的巨大減少--在相同的di/dt下約為7%(圖4)。


通過(guò)優(yōu)化模塊布局解決芯片縮小的電氣性能

  圖4:在圖2和圖4所示的開(kāi)關(guān)條件下,模塊布局V1和V2的相對(duì)IGBT 7開(kāi)關(guān)損耗。

  比較1200V 600A TRENCHSTOP? IGBT 7與前一代IGBT 4的熱和電氣性

  從本文的第一部分--以及現(xiàn)在的第二部分--可以看出,優(yōu)化模塊布局對(duì)散熱和電氣性能都有重大影響。但是,這在實(shí)踐中是如何應(yīng)用的呢?為此,讓我們比較一下以前的EconoDUAL? 3 1200V, 600A with TRENCHSTOP? IGBT4配備的模塊布局V1(FF600R12ME4_B72)和新的EconoDUAL? 3 1200V, 600A with TRENCHSTOP? IGBT7配備的模塊布局V2。

  為了得到一個(gè)實(shí)際的比較,讓我們看看典型應(yīng)用條件下的性能(圖5)。我們?cè)谀孀兤鞴ぷ髂J较逻\(yùn)行模塊,采用強(qiáng)制空氣散熱器冷卻。為了獲得模塊的完整熱圖像,我們用紅外相機(jī)測(cè)量了IGBT和FWD的結(jié)溫。


通過(guò)優(yōu)化模塊布局解決芯片縮小的電氣性能

  圖5:典型仿真條件

  受到二極管瞬變的限制,IGBT4模塊(FF600R12ME4_B72)是在du/dt為4.1kV/μs時(shí)測(cè)試的。IGBT7模塊是在兩個(gè)不同的開(kāi)關(guān)速度--5 kV/μs和6.5kV/μs--下測(cè)量的。從圖6中的結(jié)果可以看出,IGBT4模塊的最大有效值電流為490A,而IGBT7模塊在5kV/μs的IGBT(du-dt)on下最大可輸出520A的電流,在6.5kV/μs的IGBT(du-dt)on下輸出電流可達(dá)到535A。這意味著,在典型的應(yīng)用條件下,新的EconoDUAL? 3 1200V, 600A TRENCHSTOP? IGBT7可以提供約8%的更高的輸出有效值電流,而不會(huì)受到開(kāi)關(guān)速度的限制。


通過(guò)優(yōu)化模塊布局解決芯片縮小的電氣性能

  圖6:測(cè)量平均芯片溫度Tvj,avg作為不同IGBT(du-dt)on的RMS輸出電流IRMS的函數(shù)

  這些數(shù)字表明,即使不改變芯片技術(shù),也可以通過(guò)模塊設(shè)計(jì)在熱和電氣方面實(shí)現(xiàn)更高的輸出電流。在應(yīng)用條件下的實(shí)際測(cè)量中,也證實(shí)了這些發(fā)現(xiàn)。

  新開(kāi)發(fā)的帶有TRENCHSTOP? IGBT7的EconoDUAL? 3 1200V, 600A的整體開(kāi)關(guān)損耗與前一代帶有IGBT 4的產(chǎn)品相比可減少約10%至25%。此外,其靜態(tài)損耗可降低20%。測(cè)量結(jié)果證實(shí),在150°C時(shí),輸出電流增加了約7%,但如果使用IGBT7的過(guò)載運(yùn)行溫度高達(dá)175°C,這種差異會(huì)更加明顯。

  雖然芯片縮小可能會(huì)提高熱阻,但是通過(guò)巧妙的模塊設(shè)計(jì),芯片的縮小卻不一定導(dǎo)致應(yīng)用性能下降。

  • 英飛凌的EiceDRIVER?高低邊柵極驅(qū)動(dòng)器IR2181STRPBF
  • 其中,英飛凌的EiceDRIVER? 600 V 高低邊柵極驅(qū)動(dòng)器 IC(IR2181STRPBF),具有典型的 1.9 A 拉電流和 2.3 A 灌電流,具有更高的帶載能力,可驅(qū)動(dòng) MOSFET和IGBT,為產(chǎn)品從開(kāi)發(fā)設(shè)計(jì)到最終應(yīng)用全面保駕護(hù)航。
    2023-12-27 341次
  • 英飛凌門(mén)極驅(qū)動(dòng)正壓對(duì)功率半導(dǎo)體性能影響
  • 對(duì)于半導(dǎo)體功率器件來(lái)說(shuō),門(mén)極電壓的取值對(duì)器件特性影響很大。以前曾經(jīng)聊過(guò)門(mén)極負(fù)壓對(duì)器件開(kāi)關(guān)特性的影響,而今天我們來(lái)一起看看門(mén)極正電壓對(duì)器件的影響。文章將會(huì)從導(dǎo)通損耗,開(kāi)關(guān)損耗和短路性能來(lái)分別討論。
    2023-12-22 334次
  • 英飛凌160V MOTIX?三相柵極驅(qū)動(dòng)器IC
  • MOTIX?三相柵極驅(qū)動(dòng)器集成電路6ED2742S01Q是英飛凌MOTIX?品牌的新成員,該品牌通過(guò)可擴(kuò)展的產(chǎn)品組合提供低壓電機(jī)控制解決方案。它是一款160V絕緣體上硅(SOI)柵極驅(qū)動(dòng)器IC,采用5x5 mm2 QFN-32封裝,帶有熱效率高的裸露功率焊盤(pán),并集成了電源管理單元(PMU)。
    2023-07-21 389次
  • 英飛凌6.5A,2300V單通道隔離式柵極驅(qū)動(dòng)器評(píng)估板
  • 英飛凌6.5A,2300V單通道隔離式柵極驅(qū)動(dòng)器評(píng)估板(配SiC MOSFET)。EVAL-1ED3142MX12F-SIC采用半橋電路,用兩個(gè)柵極驅(qū)動(dòng)IC?1ED3142MU12F來(lái)驅(qū)動(dòng)IGBT、MOSFET和SiC MOSFET等功率開(kāi)關(guān)。
    2023-06-28 456次
  • 英飛凌的 CoolSiC? XHP? 2 高功率模塊
  • 英飛凌科技股份公司為了滿足上述需求,在其 CoolSiC?功率模塊產(chǎn)品組合中增加了兩款新產(chǎn)品:FF2000UXTR33T2M1和 FF2600UXTR33T2M1。這些功率模塊采用新開(kāi)發(fā)的3.3kV CoolSiC? MOSFET和英飛凌的.XT互連技術(shù),封裝為XHP? 2,專(zhuān)門(mén)針對(duì)牽引應(yīng)用量身定制。
    2023-06-28 421次

    萬(wàn)聯(lián)芯微信公眾號(hào)

    元器件現(xiàn)貨+BOM配單+PCBA制造平臺(tái)
    關(guān)注公眾號(hào),優(yōu)惠活動(dòng)早知道!
    10s
    溫馨提示:
    訂單商品問(wèn)題請(qǐng)移至我的售后服務(wù)提交售后申請(qǐng),其他需投訴問(wèn)題可移至我的投訴提交,我們將在第一時(shí)間給您答復(fù)
    返回頂部